Vectorized Parquet Decoding (Reader)

Vectorized Parquet Decoding (aka Vectorized Parquet Reader) allows for reading datasets in parquet format in batches, i.e. rows are decoded in batches. That aims at improving memory locality and cache utilization.

The parquet encodings are largely designed to decode faster in batches, column by column. This can speed up the decoding considerably.

Vectorized Parquet Decoding is used exclusively when ParquetFileFormat is requested for a data reader when spark.sql.parquet.enableVectorizedReader property is enabled (true) and the read schema uses AtomicTypes data types only.

Vectorized Parquet Decoding uses VectorizedParquetRecordReader for vectorized decoding.

spark.sql.parquet.enableVectorizedReader Configuration Property

spark.sql.parquet.enableVectorizedReader configuration property is on by default.

val isParquetVectorizedReaderEnabled = spark.conf.get("spark.sql.parquet.enableVectorizedReader").toBoolean
assert(isParquetVectorizedReaderEnabled, "spark.sql.parquet.enableVectorizedReader should be enabled by default")

results matching ""

    No results matching ""