agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame
agg(expr: Column, exprs: Column*): DataFrame
agg(exprs: Map[String, String]): DataFrame
Dataset API — Untyped Transformations
Untyped transformations are part of the Dataset API for transforming a Dataset to a DataFrame, a Column, a RelationalGroupedDataset, a DataFrameNaFunctions or a DataFrameStatFunctions (and hence untyped).
|
Note
|
Untyped transformations are the methods in the Dataset Scala class that are grouped in untypedrel group name, i.e. @group untypedrel.
|
| Transformation | Description |
|---|---|
Selects a column based on the column name (i.e. maps a
|
|
Selects a column based on the column name (i.e. maps a
|
|
Selects a column based on the column name specified as a regex (i.e. maps a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
agg Untyped Transformation
agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame
agg(expr: Column, exprs: Column*): DataFrame
agg(exprs: Map[String, String]): DataFrame
agg…FIXME
apply Untyped Transformation
apply(colName: String): Column
apply selects a column based on the column name (i.e. maps a Dataset onto a Column).
col Untyped Transformation
col(colName: String): Column
col selects a column based on the column name (i.e. maps a Dataset onto a Column).
Internally, col branches off per the input column name.
If the column name is * (a star), col simply creates a Column with ResolvedStar expression (with the schema output attributes of the analyzed logical plan of the QueryExecution).
Otherwise, col uses colRegex untyped transformation when spark.sql.parser.quotedRegexColumnNames configuration property is enabled.
In the case when the column name is not * and spark.sql.parser.quotedRegexColumnNames configuration property is disabled, col creates a Column with the column name resolved (as a NamedExpression).
colRegex Untyped Transformation
colRegex(colName: String): Column
colRegex selects a column based on the column name specified as a regex (i.e. maps a Dataset onto a Column).
|
Note
|
colRegex is used in col when spark.sql.parser.quotedRegexColumnNames configuration property is enabled (and the column name is not *).
|
Internally, colRegex matches the input column name to different regular expressions (in the order):
-
For column names with quotes without a qualifier,
colRegexsimply creates a Column with a UnresolvedRegex (with no table) -
For column names with quotes with a qualifier,
colRegexsimply creates a Column with a UnresolvedRegex (with a table specified) -
For other column names,
colRegex(behaves like col and) creates a Column with the column name resolved (as a NamedExpression)
cube Untyped Transformation
cube(cols: Column*): RelationalGroupedDataset
cube(col1: String, cols: String*): RelationalGroupedDataset
cube…FIXME
Dropping One or More Columns — drop Untyped Transformation
drop(colName: String): DataFrame
drop(colNames: String*): DataFrame
drop(col: Column): DataFrame
drop…FIXME
groupBy Untyped Transformation
groupBy(cols: Column*): RelationalGroupedDataset
groupBy(col1: String, cols: String*): RelationalGroupedDataset
groupBy…FIXME
join Untyped Transformation
join(right: Dataset[_]): DataFrame
join(right: Dataset[_], usingColumn: String): DataFrame
join(right: Dataset[_], usingColumns: Seq[String]): DataFrame
join(right: Dataset[_], usingColumns: Seq[String], joinType: String): DataFrame
join(right: Dataset[_], joinExprs: Column): DataFrame
join(right: Dataset[_], joinExprs: Column, joinType: String): DataFrame
join…FIXME
na Untyped Transformation
na: DataFrameNaFunctions
na simply creates a DataFrameNaFunctions to work with missing data.
rollup Untyped Transformation
rollup(cols: Column*): RelationalGroupedDataset
rollup(col1: String, cols: String*): RelationalGroupedDataset
rollup…FIXME
select Untyped Transformation
select(cols: Column*): DataFrame
select(col: String, cols: String*): DataFrame
select…FIXME
Projecting Columns using SQL Statements — selectExpr Untyped Transformation
selectExpr(exprs: String*): DataFrame
selectExpr is like select, but accepts SQL statements.
val ds = spark.range(5)
scala> ds.selectExpr("rand() as random").show
16/04/14 23:16:06 INFO HiveSqlParser: Parsing command: rand() as random
+-------------------+
| random|
+-------------------+
| 0.887675894185651|
|0.36766085091074086|
| 0.2700020856675186|
| 0.1489033635529543|
| 0.5862990791950973|
+-------------------+
Internally, it executes select with every expression in exprs mapped to Column (using SparkSqlParser.parseExpression).
scala> ds.select(expr("rand() as random")).show
+------------------+
| random|
+------------------+
|0.5514319279894851|
|0.2876221510433741|
|0.4599999092045741|
|0.5708558868374893|
|0.6223314406247136|
+------------------+
stat Untyped Transformation
stat: DataFrameStatFunctions
stat simply creates a DataFrameStatFunctions to work with statistic functions.