DecimalAggregates Logical Optimization

DecimalAggregates is a base logical optimization that transforms Sum and Average aggregate functions on fixed-precision DecimalType values to use UnscaledValue (unscaled Long) values in WindowExpression and AggregateExpression expressions.

DecimalAggregates is part of the Decimal Optimizations fixed-point batch in the standard batches of the Catalyst Optimizer.

DecimalAggregates is simply a Catalyst rule for transforming logical plans, i.e. Rule[LogicalPlan].

Tip

Import DecimalAggregates and apply the rule directly on your structured queries to learn how the rule works.

import org.apache.spark.sql.catalyst.optimizer.DecimalAggregates
val da = DecimalAggregates(spark.sessionState.conf)

// Build analyzed logical plan
// with sum aggregate function and Decimal field
import org.apache.spark.sql.types.DecimalType
val query = spark.range(5).select(sum($"id" cast DecimalType(1,0)) as "sum")
scala> val plan = query.queryExecution.analyzed
plan: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
Aggregate [sum(cast(id#91L as decimal(1,0))) AS sum#95]
+- Range (0, 5, step=1, splits=Some(8))

// Apply DecimalAggregates rule
// Note MakeDecimal and UnscaledValue operators
scala> da.apply(plan)
res27: org.apache.spark.sql.catalyst.plans.logical.LogicalPlan =
Aggregate [MakeDecimal(sum(UnscaledValue(cast(id#91L as decimal(1,0)))),11,0) AS sum#95]
+- Range (0, 5, step=1, splits=Some(8))

Example: sum Aggregate Function on Decimal with Precision Smaller Than 9

// sum aggregate with Decimal field with precision <= 8
val q = "SELECT sum(cast(id AS DECIMAL(5,0))) FROM range(1)"

scala> sql(q).explain(true)
== Parsed Logical Plan ==
'Project [unresolvedalias('sum(cast('id as decimal(5,0))), None)]
+- 'UnresolvedTableValuedFunction range, [1]

== Analyzed Logical Plan ==
sum(CAST(id AS DECIMAL(5,0))): decimal(15,0)
Aggregate [sum(cast(id#104L as decimal(5,0))) AS sum(CAST(id AS DECIMAL(5,0)))#106]
+- Range (0, 1, step=1, splits=None)

== Optimized Logical Plan ==
Aggregate [MakeDecimal(sum(UnscaledValue(cast(id#104L as decimal(5,0)))),15,0) AS sum(CAST(id AS DECIMAL(5,0)))#106]
+- Range (0, 1, step=1, splits=None)

== Physical Plan ==
*HashAggregate(keys=[], functions=[sum(UnscaledValue(cast(id#104L as decimal(5,0))))], output=[sum(CAST(id AS DECIMAL(5,0)))#106])
+- Exchange SinglePartition
   +- *HashAggregate(keys=[], functions=[partial_sum(UnscaledValue(cast(id#104L as decimal(5,0))))], output=[sum#108L])
      +- *Range (0, 1, step=1, splits=None)

Example: avg Aggregate Function on Decimal with Precision Smaller Than 12

// avg aggregate with Decimal field with precision <= 11
val q = "SELECT avg(cast(id AS DECIMAL(10,0))) FROM range(1)"

scala> val q = "SELECT avg(cast(id AS DECIMAL(10,0))) FROM range(1)"
q: String = SELECT avg(cast(id AS DECIMAL(10,0))) FROM range(1)

scala> sql(q).explain(true)
== Parsed Logical Plan ==
'Project [unresolvedalias('avg(cast('id as decimal(10,0))), None)]
+- 'UnresolvedTableValuedFunction range, [1]

== Analyzed Logical Plan ==
avg(CAST(id AS DECIMAL(10,0))): decimal(14,4)
Aggregate [avg(cast(id#115L as decimal(10,0))) AS avg(CAST(id AS DECIMAL(10,0)))#117]
+- Range (0, 1, step=1, splits=None)

== Optimized Logical Plan ==
Aggregate [cast((avg(UnscaledValue(cast(id#115L as decimal(10,0)))) / 1.0) as decimal(14,4)) AS avg(CAST(id AS DECIMAL(10,0)))#117]
+- Range (0, 1, step=1, splits=None)

== Physical Plan ==
*HashAggregate(keys=[], functions=[avg(UnscaledValue(cast(id#115L as decimal(10,0))))], output=[avg(CAST(id AS DECIMAL(10,0)))#117])
+- Exchange SinglePartition
   +- *HashAggregate(keys=[], functions=[partial_avg(UnscaledValue(cast(id#115L as decimal(10,0))))], output=[sum#120, count#121L])
      +- *Range (0, 1, step=1, splits=None)

Executing Rule — apply Method

apply(plan: LogicalPlan): LogicalPlan
Note
apply is part of the Rule Contract to execute (apply) a rule on a TreeNode (e.g. LogicalPlan).

apply…​FIXME

results matching ""

    No results matching ""